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is due to the interchange of the growth and diminution of o (z) (Fig. 2 c). For compa- 
rison, let us show that in a similar problem examined in [2] and in a number of problems 
on Euler elastica. the modes with an inflection are known to be unstable. 

The displacements are determined as the sum of the function v (r) found earlier and 
a second degree polynomial in t in the problem of equilibrium of a string without an 
external load under the effect of a curved magnet. Hence, only positive forms without 

inflection points are obtained, as it should be also in the case of a load which does not 
change sign for any displacements. 
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General relationships of the theory of ideal plasticity and the statics of a fri- 
able medium for Tresca plasticity condition and its extensions, on the basis 

of determining the dissipation function, are considered. The work is related 
to the investigations in [I, 21. 

1. Under the Tresca plasticity condition, the dissipation-function is 

D = 2k I k = const (1-i) 

where Ei max is the maximum principal strain rate component. For definiteness,we later 
assume ei = &a; we shall consider the material incompressible. Let us write the initial 
functional to determine the associated loading law as 

D = 2% e3 (Eij) L P (% i- Ey i h) (1.2) 

where ei, are the components of the strain rate tensor, p is a Lagrange multiplier. It 

is necessary to know the expression e3 = e, (eij). Let ni denote the direction cosines of 
the third principal direction in a Cartesian coordinate system zi. Then niE3 = E{j?Zje 

Hence, the known formula follows 
e3 = Eij n{?l, (i.3) 

Using (1.3), it is necessary to take into account that nt = ai (etj) since the orientation 

of the principal directions change when the components of the strain rate tensor change. 

Taking account of (1.2). (1.3). in conformity with the associated loading law we obtain 
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For example, let E,,,,, - px, then 

2 (eijninj) := n? 
ifnj 

-i. 2&$ i -7$-y = a*? i- 2Qi U .6t 
.\ .\ 

Since nZ + 112” 4- nsa = 4, then the last expression in parantheses in (1.6) equals zero. 
The assertion (1.5) is proved analogously in the general case. According to (1.41, (1.5) 
we have o* = I” -; 2/in,:, *,* r,1/ =: 2knlnz, . . . (1.7) 

The expression not written down in (1.7) are obtained by cyclic permutation of the 

subscripts. According to (1.7) 
u = S - ‘/&. 5 = ‘IJSijSij 0.8) 

The relationships (f.?),(l. 8) determine the plasticity conditions corresponding to the 
edge of the Tresca prism.known as tile “total plasticity condition”. For the faces of the 

Tresca prism u1 - a, = 2k (us < us .< q). In this case, from the associated flow law 
El = h, i?p =. -3, es ::= 0. The dissipation function is 

D z Cr,El .- IJ~F~ + (T:,P~ .z- “I, L ‘1 “6 t’, 

We shall proceed from the dissipation function II ?I,+, under the conditions cl - 

a* z 0, es = 0. The initial functional is of the form 

L) z 2ke, .i. p1 (Er .{ F,f -J- !I$:% !I.!!) 

where ~1, ps are &grange factors, bet Ii, mi be the direction cosines of the principal 

directions el, sz from (1.11). According to (1.4), (1.51, we obtain 

or ~7 23611’ y pe (II’ ,’ v&Z) ! pgt:',... (l.I\,) 

T ry T 2kIil, - pl (1,1, ; nImz) .i ~‘$~rtz$.+* 

There follows from (1, Iti) 

After e~rniRat~ng the quantities pl, p2 from (1.10) as is done in [I], we obtarn the 

plasticity condition in the Levy form ; the corresponding faces of the Tresca prism are 

4 (q ., k*) (q : 4ka)z : 27 r* :: 0 (l.l”! 

q -= “i;3ij, y -z a..‘a. ‘3 ,.I 21 Ik At 

the primes are ascribed to the deviator components. 

g, Let us write the fundamen!al limit condition of the statics of a friable medium as 

max 1 ‘I, 1 == k . un tg p, k, p - con% (2.1, 

where r,, uR are the shear and normal stresses. The relationship (2.1) determines a 
Coulomb prism in the space of principal stresses, for which the equation of the edge can 

be written as (Q - cl) -. (ox .;- a,) sin p - 2k 1'0s p 

(a, -. a,) - (0% .i cf8) sin p - 2k cos p (I?.“) 

In conformity with the generalized associated flow law 
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e,=&(---1-sin&, es=&(-i-_-in@ (2.3) 
8% = II (1 - sin p) -j- X, (i - sin p) 

From (2.3) we obtain 
D = UiEi = 2k COS f3 (& -j- I.21 (2.4) 

k + k = - 2& (81 f- 82 i- eS), h .A- 3.3 = l/2 [es - (el . t e2!] (3.5) 

Therefore, the dilatancy dependence holds 

E, 4, E2 .,- E2 4 [Es - (El i- 82)f Sin p = 0 (‘1.6) 

In determining the relationships of the statics of a friable medium by proceeding from 

the deflnltlon of the dissipative function, the presence of the dilatancy dependence (2.6) 
should be postulated. The initial functional should be taken in one of the equivalent 
forms kcasp DC-- sin p (Q + sy ?- e,) + PI lex -F ey + e, + @I - ez - e2) sin PI (2.7) 

D = k cos p (et - e, - es) + k le, -I- ev -t ez + (8, - e, - e2) sin p (24 
where pl, Ps are Lagrange multipliers. Let us proceed from (2.7). Transforming (2.7) 
into the form 

kcosp 
D=--,inp (13, _t ev + e,) + pl {(IS, + ev 7- eJ (1 - sin P) + s2 sin p1 12.9) 

and taking account of (1. 7), we obtain 

a,= -z&pl(i- sinp) +2nl’sinp],. ..,Tq =2wwv4sinp,. . . (2.10) 

It follows from (2.10) that 

Relationships determining the plasticity conditions corresponding to an edge of the Cou- 
lomb prlsm, considered in El], follow from (2.10). (2.11). The general case of the de- 
pendence max (1 r, 1 - f (an)) = 0 can be considered analogously. 
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